Answer:
Solving -5\sqrt{5} we get [tex]\mathbf{-9\sqrt{5}}[/tex]
Step-by-step explanation:
We need to solve [tex]-2\sqrt{20}-\sqrt{125}[/tex]
Factors of 20 are: 2x2x5
Factors of 125 are: 5x5x5
Replacing 20 and 125 with their factors.
[tex]-2\sqrt{20}-\sqrt{125}\\=-2\sqrt{2\times2\times5}-\sqrt{5\times5\times5}\\=-2\sqrt{2^2\times5}-\sqrt{5^2\times5}\\We \ know \ \sqrt{a^2}=a \\=-2\sqrt{2^2}\sqrt{5}-\sqrt{5^2}\sqrt{5}\\=-2\times2\sqrt{5}-5\sqrt{5}\\=-4\sqrt{5}-5\sqrt{5}\\Taking \ \sqrt{5} \ common\\=(-4-5)\sqrt{5}\\=-9\sqrt{5}[/tex]
So, solving -5\sqrt{5} we get [tex]\mathbf{-9\sqrt{5}}[/tex]