write the equation of the line that passes through the points (-3,4) and (-4,2). Write the final answer in slope intecept form

Respuesta :

Answer:

The equation in the slope-intercept form will be:

[tex]y=2x+10[/tex]

Step-by-step explanation:

Given the points

  • (-3, 4)
  • (-4, 2)

Finding the slope between two points

[tex]\left(x_1,\:y_1\right)=\left(-3,\:4\right),\:\left(x_2,\:y_2\right)=\left(-4,\:2\right)[/tex]

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{2-4}{-4-\left(-3\right)}[/tex]

[tex]m=2[/tex]

As the point-slope form  of the line equation is

[tex]y-y_1=m\left(x-x_1\right)[/tex]

putting the values m=2 and the point (-3, 4)

[tex]y-4=2\left(x-\left(-3\right)\right)[/tex]

[tex]y-4=2\left(x+3\right)[/tex]

Writing the equation in slope-intercept form

[tex]y=mx+b[/tex]

where m is the slope, and b is the y-intercept

so the equation becomes

[tex]y-4=2\left(x+3\right)[/tex]

add 4 to both sides

[tex]y-4+4=2\left(x+3\right)+4[/tex]

[tex]y=2x+10[/tex]

Therefore, the equation in the slope-intercept form will be:

[tex]y=2x+10[/tex]