Respuesta :

Answer:

Please, see the explanation.

Step-by-step explanation:

DETERMINING THE EQUATION FOR THE FIRST TABLE

Given the first table

x                     y

-5                   10

-1                    2

0                    0

11                   -22

From the given equation, we can verify and determine that

[tex]y=-2x[/tex] is the required equation that satisfies the table values of the first table.

substituting the table values of all the ordered pairs to check

FOR (-5, 10)

y =-2x

10 = -2(-5)

10 = 10

L.H.S = R.H.S

FOR (-1, 2)

y =-2x

2 = -2(-1)

10 = 2

L.H.S = R.H.S

FOR (0, 0)

y =-2x

0 = -2(0)

0 = 0

L.H.S = R.H.S

FOR (11, -22)

y =-2x

-22 = -2(11)

-22 = -22

L.H.S = R.H.S

As all the ordered pairs of the first table satisfy the equation.

Hence, [tex]y=-2x[/tex] is the equation for the first table.

DETERMINING THE EQUATION FOR THE SECOND TABLE

Given the first table

x                     y

-8                   -11

-2                    -5

1                      -2

7                      4

From the given equation, we can verify and determine that

[tex]y=x-3[/tex] is the required equation that satisfies the table values of the second table.

substituting the table values of all the ordered pairs to check

FOR (-8, -11)

y =x-3

-11 = -8-3

-11 = -11

L.H.S = R.H.S

FOR (-2, -5)

y =x-3

-5= -2-3

-11 = -5

L.H.S = R.H.S

FOR (1, -2)

y = x-3

-2= 1-3

-2 = -2

L.H.S = R.H.S

FOR (7, 4)

y = x-3

4 = 7-3

4 = 4

L.H.S = R.H.S

As all the ordered pairs of the second table satisfy the equation.

Hence, [tex]y = x-3[/tex] is the equation for the second table.

Therefore, the equations are:

[tex]y=-2x[/tex]

[tex]y = x-3[/tex]

Now, let us solve to determine the solution

[tex]\begin{bmatrix}y=-2x\\ y=x-3\end{bmatrix}[/tex]

Arrange equation variables for elimination

[tex]\begin{bmatrix}y+2x=0\\ y-x=-3\end{bmatrix}[/tex]

[tex]y-x=-3[/tex]

[tex]-[/tex]

[tex]\underline{y+2x=0}[/tex]

[tex]-3x=-3[/tex]

[tex]\begin{bmatrix}y+2x=0\\ -3x=-3\end{bmatrix}[/tex]

solving

[tex]-3x=-3[/tex]

[tex]\frac{-3x}{-3}=\frac{-3}{-3}[/tex]

[tex]x=1[/tex]

For [tex]y+2x=0[/tex],  plugin [tex]x = 1[/tex]

[tex]y+2\cdot \:1=0[/tex]

[tex]y+2=0[/tex]

[tex]y=-2[/tex]

Therefore, the solution to the system of equations are:

[tex]y=-2,\:x=1[/tex]