Respuesta :

Answer:

a= −b/x

Step-by-step explanation:

Let's solve for a.

ax2+bx=0

Step 1: Add -bx to both sides.

ax2+bx+−bx=0+−bx

ax2=−bx

Step 2: Divide both sides by x^2.

ax2x2=−bxx2

a=−bx

s1m1

Answer:

Step-by-step explanation:

perfect sqaure formula (u+w)²=u²+2uw+w²

ax²+bx+c=0  divide by a

[tex]x^{2} +\frac{bx}{a} + \frac{c}{a} =0[/tex]  so u=1, 2uw=2*1*w= b/a, so w=b/2a

[tex](x^{2}+ \frac{bx}{a} +\frac{b^{2} }{4a^{2} } ) +\frac{c}{a} -\frac{b^{2} }{4a^{2} }=0[/tex] now that we formed the perfect sqare solve

[tex](x +\frac{b}{2a} )^{2} +\frac{c*4*a-b^{2} }{4a^{2} } =0[/tex] but we can factor a negative in front of the fraction

[tex](x+\frac{b}{2a} )^{2} -\frac{b^{2} -4ac }{4a^{2} } =0[/tex] now isolate the 2 terms and squareroot both sides

[tex]\sqrt{ (x +\frac{b}{2a} )^{2}} =\sqrt{ \frac{b^{2} -4ac }{4a^{2} } }[/tex] and you will be left with

[tex]x +\frac{b}{2a} =\ + - \frac {\sqrt{ b^{2} -4ac} }{2a }[/tex]  subtract b/2a from both sides

x= [tex]\frac{-b+ - \sqrt{b^{2}-4ac } }{2a}[/tex]