Respuesta :

See Explanation

Step-by-step explanation:

1. By interior angle sum Postulate of a triangle.

[tex] m\angle a+ m\angle y +m\angle z= 180\degree.... (1)\\\\

m\angle a+ m\angle w +m\angle x= 180\degree.... (2)\\\\[/tex]

From equations (1) & (2), we find:

[tex] m\angle a+ m\angle y +m\angle z= m\angle a+ m\angle w +m\angle x\\\\

m\angle y +m\angle z= m\angle w +m\angle x\\[/tex]

Hence proved

2. In [tex] \triangle PQS, \: \angle QSR [/tex] is exterior angle.

Therefore, by remote interior angle theorem, we have:

[tex] m\angle QPS + m\angle PQS= m\angle QSR\\\\

x + m\angle PQS= 2x\\\\

m\angle PQS= 2x-x\\\\

m\angle PQS = x.... (1)\\\\

m\angle QPS = x.... (given).... (2)\\[/tex]

From equations (1) & (2), we find:

[tex] m\angle PQS = m\angle QPS\\\\

\therefore \angle PQS \cong \angle QPS\\\\

\therefore PS \cong QS\\(sides\: opposite \: to\: congruent \:\angle s) \\\\[/tex]

[tex] \therefore \triangle PQS [/tex] is an isosceles triangle.

Thus proved.