Answer:
As
[tex]\left(x^3+2x^2+5\right)-\left(8x^2-4x+6\right)=x^3-6x^2+4x-1[/tex]
Therefore, option D is the correct answer is.
Step-by-step explanation:
Given the expression
[tex]\left(x^3+2x^2+5\right)\:-\:\left(8x^2\:-\:4x\:+\:6\right)[/tex]
solving to simplify the expression
[tex]\left(x^3+2x^2+5\right)\:-\:\left(8x^2\:-\:4x\:+\:6\right)[/tex]
[tex]=x^3+2x^2+5-\left(8x^2-4x+6\right)[/tex] ∵ [tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]
[tex]=x^3+2x^2+5-\left(8x^2-4x+6\right)[/tex]
[tex]=x^3+2x^2+5-8x^2+4x-6[/tex]
Group like terms
[tex]=x^3+2x^2-8x^2+4x+5-6[/tex]
[tex]\mathrm{Add\:similar\:elements:}\:2x^2-8x^2=-6x^2[/tex]
[tex]=x^3-6x^2+4x+5-6[/tex]
[tex]\mathrm{Add/Subtract\:the\:numbers:}\:5-6=-1[/tex]
[tex]=x^3-6x^2+4x-1[/tex]
Therefore, the simplified form of the expression is
[tex]\left(x^3+2x^2+5\right)-\left(8x^2-4x+6\right)=x^3-6x^2+4x-1[/tex]
Therefore, option D is the correct answer is.