Respuesta :

Answer:

y=mx+b

y=-4x +12 is your equation

m= yo

your slope

Step-by-step explanation:

Answer:

The equation of the line that passes through the points (-1,8) and (2,-4) is:

  • [tex]y=-4x+4[/tex]

Step-by-step explanation:

Given the points

  • (-1,8)
  • (2,-4)

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-1,\:8\right),\:\left(x_2,\:y_2\right)=\left(2,\:-4\right)[/tex]

[tex]m=\frac{-4-8}{2-\left(-1\right)}[/tex]

[tex]m=-4[/tex]

As the point-slope form of the line equation is

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope.

substituting the values m = -4 and the point (-1,8)

[tex]y-\(8\right=-4\left(x-\left(-1\right)\right)[/tex]

[tex]y-8 = -4(x+1)[/tex]

Add 8 to both sides

[tex]y-8+8=-4\left(x+1\right)+8[/tex]

[tex]y=-4x+4[/tex]

Therefore, the equation of the line that passes through the points (-1,8) and (2,-4) is:

  • [tex]y=-4x+4[/tex]