Respuesta :

Answer:

2

Step-by-step explanation:

solution at attachment box

a2/a1 =r

a3/a2=r

Ver imagen papatyam1711

Answer:

Please check the explanation.

Step-by-step explanation:

Given the geometric sequence

a – 2, a, a + 4

  • We know that the common ratio 'r' of a geometric sequence can be obtained by dividing the successor term by the previous term.
  • Also, we know that the common ratio 'r' of a geometric sequence is the same i.e. remain constant.

so the expression to find the common ratio 'r' of the geometric sequence will be:

[tex]\:r[/tex] ⇒ [tex]\frac{a}{a-2}=\frac{a+4}{a}[/tex]

[tex]\frac{a}{a-2}=\frac{a+4}{a}[/tex]

[tex]\mathrm{Apply\:fraction\:cross\:multiply:\:if\:}\frac{a}{b}=\frac{c}{d}\mathrm{\:then\:}a\cdot \:d=b\cdot \:c[/tex]

[tex]aa=\left(a-2\right)\left(a+4\right)[/tex]

[tex]a^2=\left(a-2\right)\left(a+4\right)[/tex]

[tex]a^2=a^2+2a-8[/tex]

[tex]\mathrm{Subtract\:}a^2+2a\mathrm{\:from\:both\:sides}[/tex]

[tex]a^2-\left(a^2+2a\right)=a^2+2a-8-\left(a^2+2a\right)[/tex]

[tex]-2a=-8[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}-2[/tex]

[tex]\frac{-2a}{-2}=\frac{-8}{-2}[/tex]

[tex]a=4[/tex]

so the ratio becomes

[tex]r=\:\frac{4}{4-2}=\frac{4}{2} =2[/tex]

Hence, the common ratio 'r' will be:

[tex]r=2[/tex]

VERIFICATION

so the sequence becomes

a – 2, a, a + 4

(4) - 2, 4, (4)+4     ∵ a=4

2, 4, 8

From the sequence it is clear that

4/2=8/4  ⇒ r

2=2    ⇒ r

Hence, the common ration 'r=2' is the same.

Therefore, the common ratio 'r' will be:

[tex]r=2[/tex]