Respuesta :

Answer:

  • [tex]\mathrm{Domain\:of\:}\:-5x-1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

  • [tex]\mathrm{Range\:of\:}-5x-1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Step-by-step explanation:

Finding the domain:

The domain of a function is the set of possible input values for which the function is real and defined.

Given the function

[tex]y=-5x-1[/tex]

The function has no undefined points nor domain constraints. Hence, the domain is

[tex]-\infty \:<x<\infty \:[/tex]

i.e.

[tex]\mathrm{Domain\:of\:}\:-5x-1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Finding the range:

The range of a function is the set of possible output values (dependent variable y values) for which a function is defined.

The range of polynomials with odd degree is all the real numbers.

Hence, the domain is

[tex]-\infty \:<y<\infty \:[/tex]

i.e.

[tex]\mathrm{Range\:of\:}-5x-1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]