Respuesta :

Answer:

The equation of the line is:

[tex]y=(-\frac{1}{2})x+1[/tex]

Therefore, option a is the correct answer.

Step-by-step explanation:

Given the points

  • (-2, 2)
  • (4, -1)

Finding the slope

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-2,\:2\right),\:\left(x_2,\:y_2\right)=\left(4,\:-1\right)[/tex]

[tex]m=\frac{-1-2}{4-\left(-2\right)}[/tex]

[tex]m=-\frac{1}{2}[/tex]

As the point-slope form of the equation of the line is

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope

substituting the values [tex]m=-\frac{1}{2}[/tex] and the point (-2, 2)

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-2=\frac{-1}{2}\left(x-\left(-2\right)\right)[/tex]

[tex]y-2=\frac{-1}{2}\left(x+2\right)[/tex]

[tex]y-2=-\frac{1}{2}\left(x+2\right)[/tex]       ∵[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

Add 2 to both sides

[tex]y-2+2=-\frac{1}{2}\left(x+2\right)+2[/tex]

[tex]y=(-\frac{1}{2})x+1[/tex]

Hence, the equation of the line is:

[tex]y=(-\frac{1}{2})x+1[/tex]

Therefore, option a is the correct answer.