Answer:
[tex] 2x \sec^2 (x^2 + 5) [/tex]
Step-by-step explanation:
[tex] f(x) = \tan (x^2 + 5) [/tex]
[tex] \dfrac{d}{dx} \tan u = \sec^2 u \dfrac{d}{dx} u [/tex]
[tex] \dfrac{d}{dx} \tan (x^2 + 5) = \sec^2 (x^2 + 5) \dfrac{d}{dx} (x^2 + 5) [/tex]
[tex] \dfrac{d}{dx} \tan (x^2 + 5) = [\sec^2 (x^2 + 5)]2x [/tex]
[tex] \dfrac{d}{dx} \tan (x^2 + 5) = 2x \sec^2 (x^2 + 5) [/tex]