3. A clothing manufacturing company makes two types of jogging pants, design A and design B. the design A jogging pants sells to the retail stores for Php2500 each and the design B jogging pants for Php2100. The cost for manufacturing each design A is Php1750 and the cost of each design B is Php1200. If the company makes no more than 120 jogging pants a week and budgets no more than Php150000 per week, how many of each type should be made to maximize profit?

Respuesta :

Answer:

z(max) =  256000  Php

x₁ = 10

x₂ = 110

Step-by-step explanation:

Jogging pants design                Selling Price       Cost    

weekly production

 Design A    x₁                                     2500            1750

  Design B    x₂                                    2100            1200      

1. z ( function is : )

z = 2500*x₁  +  2100*x₂       to maximize

First constraint weekly production

 x₁    +   x₂    ≤  120

Second constraint Budget

1750*x₁  +  1200*x₂   ≤   150000      

Then the model is

z = 2500*x₁  +  2100*x₂       to maximize

Subject to

 x₁    +   x₂    ≤  120

1750*x₁  +  1200*x₂   ≤   150000  

General constraints   x₁  ≥  0           x₂   ≥ 0            both integers

First table

z           x₁           x₂        s₁       s₂      cte

1       -2500      -2100    0       0         0

0          1              1          1        0  = 120

0      1750         1200     0       1   = 150000

Using AtoZmath online solver and after 6 iterations the solution is:

z(max) =  256000  Php

x₁ = 10

x₂ = 110