6) Two coastguard stations P and Q are 17km apart, with due East of P. A ship S is observed in distress on a bearing 048° fromP and 324 from Q. How far is the ship from each of the coastguard stations?

Respuesta :

Answer:

The ship S is at 10.05 km to coastguard P, and 12.70 km to coastguard Q.

Step-by-step explanation:

Let the distance of the ship to coastguard P be represented by x, and its distance to coastguard Q be represented by y.

But,

<P = 048°

<Q = [tex]360^{o}[/tex] - [tex]324^{o}[/tex]

     = 0[tex]36^{o}[/tex]

Sum of angles in a triangle = [tex]180^{o}[/tex]

<P + <Q + <S = [tex]180^{o}[/tex]

048° + 0[tex]36^{o}[/tex] + <S = [tex]180^{o}[/tex]

[tex]84^{o}[/tex] + <S = [tex]180^{o}[/tex]

<S  = [tex]180^{o}[/tex] -  [tex]84^{o}[/tex]

    = [tex]96^{o}[/tex]

<S = [tex]96^{o}[/tex]

Applying the Sine rule,

[tex]\frac{y}{Sin P}[/tex] = [tex]\frac{x}{Sin Q}[/tex] = [tex]\frac{z}{Sin S}[/tex]

[tex]\frac{y}{Sin P}[/tex] = [tex]\frac{z}{Sin S}[/tex]

[tex]\frac{y}{Sin 48^{o} }[/tex] = [tex]\frac{17}{Sin 96^{o} }[/tex]

[tex]\frac{y}{0.74314}[/tex] = [tex]\frac{17}{0.99452}[/tex]

⇒ y = [tex]\frac{12.63338}{0.99452}[/tex]

       = 12.703

y = 12.70 km

[tex]\frac{x}{Sin Q}[/tex] = [tex]\frac{z}{Sin S}[/tex]

[tex]\frac{x}{Sin 36^{o} }[/tex] = [tex]\frac{17}{Sin 96^{o} }[/tex]

[tex]\frac{x}{0.58779}[/tex] = [tex]\frac{17}{0.99452}[/tex]

⇒ x = [tex]\frac{9.992430}{0.99452}[/tex]

      = 10.0475

x = 10.05 km

Thus,

the ship S is at a distance of 10.05 km to coastguard P, and 12.70 km to coastguard Q.