Respuesta :

Answer:

An equation in standard form for the line is:

[tex]\frac{5}{2}x-y=-4[/tex]

Step-by-step explanation:

Given the points

  • (-2, -1) and (0, 4)

The slope between two points

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-2,\:-1\right),\:\left(x_2,\:y_2\right)=\left(0,\:4\right)[/tex]

[tex]m=\frac{4-\left(-1\right)}{0-\left(-2\right)}[/tex]

[tex]m=\frac{5}{2}[/tex]

Writing the equation in point-slope form

As the point-slope form of the line equation is defined by

[tex]y-y_1=m\left(x-x_1\right)[/tex]

Putting the point (-2, -1) and the slope m=1 in the line equation

[tex]y-\left(-1\right)=\frac{5}{2}\left(x-\left(-2\right)\right)[/tex]

[tex]y+1=\frac{5}{2}\left(x+2\right)[/tex]

[tex]y=\frac{5}{2}x+4[/tex]

Writing the equation in the standard form form

As we know that the equation in the standard form is

[tex]Ax+By=C[/tex]

where x and y are variables and A, B and C are constants

so

[tex]y=\frac{5}{2}x+4[/tex]

[tex]\frac{5}{2}x-y=-4[/tex]

Therefore, an equation in standard form for the line is:

[tex]\frac{5}{2}x-y=-4[/tex]