Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

[tex]\frac{9}{a^2+9a+20}[/tex] , [tex]\frac{7a}{a^2+11a+28}[/tex]

Factor the denominators of both fractions

[tex]\frac{9}{(a+4)(a+5)}[/tex] , [tex]\frac{7a}{(a+4)(a+7)}[/tex]

The lowest common denominator of both fractions is (a + 4)(a + 5)(a + 7)

Multiply numerator/denominator of first fraction by (a + 7)

Multiply numerator/denominator of second fraction by (a + 5 )

[tex]\frac{9(a+7)}{(a+4)(a+5)(a+7)}[/tex] , [tex]\frac{7a(a+5)}{(a+4)(a+5)(a+7)}[/tex] , then

[tex]\frac{9a+63}{(a+4)(a+5)(a+7)}[/tex] , [tex]\frac{7a^2+35a}{(a+4)(a+5)(a+7)}[/tex]