Suppose that the terminal side of angle alphaα lies in Quadrant I and the terminal side of angle betaβ lies in Quadrant IV. If sine alpha equals five thirteenthssinα= 5 13 and cosine beta equals StartFraction 6 Over StartRoot 85 EndRoot EndFractioncosβ= 6 85​, find the exact value of cosine left parenthesis alpha plus beta right parenthesiscos(α+β).

Respuesta :

Solution :

It is given that :

[tex]$\alpha$[/tex] lies in the first quadrant.

And [tex]$\beta$[/tex] lies in the fourth quadrant.

Since, [tex]$\sin \alpha = \frac{5}{13}$[/tex]     and [tex]$\cos \beta = \frac{6}{\sqrt{85}}$[/tex]    (given)

[tex]$\sin \alpha = \frac{5}{13}$[/tex]  

[tex]$\cos \alpha = \sqrt{1-\sin^2 \alpha}$[/tex]

   [tex]$\cos \alpha = \frac{12}{13}$[/tex]

Similarly  [tex]$\cos \beta = \frac{6}{\sqrt{85}}$[/tex]

[tex]$\sin \beta = \sqrt{1-\cos^2 \beta}$[/tex]

[tex]$\sin \beta = \sqrt{1-\frac{36}{85}}$[/tex]

     [tex]$-\frac{7}{\sqrt{85}}$[/tex]      (IVth quadrant)

Therefore,

[tex]$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$[/tex]

                 [tex]$=\frac{12}{13}\times \frac{6}{\sqrt{85}}-\frac{5}{13}\times \frac{-7}{\sqrt{85}}$[/tex]

                [tex]$= \frac{107}{13 \sqrt{85}}$[/tex]