Points X and Z are on a number line, and point Y partitions

line XZ into two parts so that the ratio of the length of line

segment XY to the length of line segment YZ is 5:7. The

coordinate of X is 0.4, and the coordinate of Y is 5.8. What

is the coordinate of Z?

Respuesta :

Answer:

The coordinate of [tex]Z[/tex] is 13.36.

Step-by-step explanation:

According to the statement, we have the following information:

[tex]\frac{XY}{XZ} = \frac{5}{12}[/tex] (1)

[tex]\frac{YZ}{XZ} = \frac{7}{12}[/tex] (2)

[tex]X = 0.4[/tex] (3)

[tex]Y = 5.8[/tex] (4)

From (2), we have the following expression:

[tex]YZ = \frac{7}{12}\cdot XZ[/tex]

[tex]Y-Z =\frac{7}{12}\cdot (X-Z)[/tex]

[tex]Y - Z = \frac{7}{12}\cdot X -\frac{7}{12}\cdot Z[/tex]

[tex]Y-\frac{7}{12}\cdot X = Z-\frac{7}{12}\cdot Z[/tex]

[tex]\frac{5}{12}\cdot Z = Y-\frac{7}{12}\cdot X[/tex]

[tex]5\cdot Z = 12\cdot Y-7\cdot X[/tex]

[tex]Z = \frac{12}{5}\cdot Y-\frac{7}{5}\cdot X[/tex] (5)

If we know that [tex]Y = 5.8[/tex] and [tex]X = 0.4[/tex], then the coordinate of [tex]Z[/tex] is:

[tex]Z = \frac{12}{5}\cdot (5.8)-\frac{7}{5}\cdot (0.4)[/tex]

[tex]Z = 13.36[/tex]

The coordinate of [tex]Z[/tex] is 13.36.