Respuesta :

Answer:

The coordinates that satisfy the equations will be: (3, 2)

Hence, option C is correct.

Step-by-step explanation:

Given the equations

[tex]x\:-2y\:=-1;\:2x\:+\:3y=12[/tex]

solving the equations to find the solution values (coordinates)

[tex]\begin{bmatrix}x-2y=-1\\ 2x+3y=12\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}x-2y=-1\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:2x-4y=-2[/tex]

[tex]\begin{bmatrix}2x-4y=-2\\ 2x+3y=12\end{bmatrix}[/tex]

[tex]2x+3y=12[/tex]

[tex]-[/tex]

[tex]\underline{2x-4y=-2}[/tex]

[tex]7y=14[/tex]

so

[tex]\begin{bmatrix}2x-4y=-2\\ 7y=14\end{bmatrix}[/tex]

solve for y

[tex]7y=14[/tex]

[tex]y=2[/tex]

[tex]\mathrm{For\:}2x-4y=-2\mathrm{\:plug\:in\:}y=2[/tex]

[tex]2x-4\cdot \:2=-2[/tex]

[tex]2x=6[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}2[/tex]

[tex]\frac{2x}{2}=\frac{6}{2}[/tex]

[tex]x=3[/tex]

[tex]\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}[/tex]

[tex]x=3,\:y=2[/tex]

Therefore, the coordinates that satisfy the equations will be: (3, 2)

Hence, option C is correct.

Answer:

3,2

Step-by-step explanation: