Respuesta :

Answer:

Please check the explanation!

Step-by-step explanation:

As the discrimination expression is

[tex]b^2-4ac[/tex]

if

[tex]b^2-4ac\:<0[/tex]

then the equation has no real solution.

Given the equation

[tex]mx^2+3x+1-m=0[/tex]

by comparing the quadratic equation

[tex]\:ax^2+bx+c=0[/tex]

[tex]mx^2+3x+1-m=0[/tex]

we can observe that

[tex]a=m[/tex]

[tex]b=3[/tex]

[tex]c=(1-m)[/tex]

substituting the values in discrimination to find the values of m

so

[tex]3^2-4m\left(1-m\right)=0[/tex]

[tex]9-4m+4m^2=0[/tex]

[tex]4m^2-4m+9=0[/tex]

[tex]\frac{-4m+4m^2}{4}=\frac{-9}{4}[/tex]

[tex]-m+m^2=-\frac{9}{4}[/tex]

[tex]\left(m-\frac{1}{2}\right)^2=-2[/tex]

as

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

so solving

[tex]m-\frac{1}{2}=\sqrt{-2}[/tex]

[tex]m-\frac{1}{2}=\sqrt{-1}\sqrt{2}[/tex]    

[tex]m-\frac{1}{2}=\sqrt{2}i[/tex]              ∵  [tex]\sqrt{-1}=i[/tex]

[tex]m=\sqrt{2}i+\frac{1}{2}[/tex]

and also solving

[tex]m-\frac{1}{2}=-\sqrt{-2}[/tex]

[tex]m-\frac{1}{2}=-\sqrt{2}i[/tex]

[tex]m=-\sqrt{2}i+\frac{1}{2}[/tex]

As we know that

if

[tex]b^2-4ac\:<0[/tex]

then the equation has no real solution.

Therefore, for the values of [tex]m=\sqrt{2}i+\frac{1}{2},\:m=-\sqrt{2}i+\frac{1}{2}[/tex], for which the equation  [tex]mx^2+3x+1-m=0[/tex] will have no solution.