f(x)= x^2 + 10f(x)=x

2

+10f, left parenthesis, x, right parenthesis, equals, x, squared, plus, 10

Over which interval does fff have a positive average rate of change?

Choose 1 answer:

Choose 1 answer:


(Choice A)

A

[-3,3][−3,3]open bracket, minus, 3, comma, 3, close bracket


(Choice B)

B

[-4,-1][−4,−1]open bracket, minus, 4, comma, minus, 1, close bracket


(Choice C)

C

[-3,1][−3,1]open bracket, minus, 3, comma, 1, close bracket


(Choice D)

D

[-1,2][−1,2]

Respuesta :

Answer:

The option D represents an interval with a positive average rate of change.

Step-by-step explanation:

Let [tex]f(x) = x^{2}+10[/tex], the average rate of change on the interval [tex][a,b][/tex] is represented by the definition of the secant line:

[tex]\bar f = \frac{f(b) -f(a)}{b-a}[/tex] (1)

Where:

[tex]a[/tex], [tex]b[/tex] - Lower and upper bounds, dimensionless.

[tex]f(a)[/tex], [tex]f(b)[/tex] - Function evaluated at lower and upper bounds, dimensionless.

Now we proceed to check each option:

A. [tex]a = -3[/tex], [tex]b = 3[/tex]

[tex]\bar f = \frac{19-19}{3-(-3)}[/tex]

[tex]\bar f = 0[/tex]

B. [tex]a = -4[/tex], [tex]b = -1[/tex]

[tex]\bar f = \frac{11-26}{(-1)-(-4)}[/tex]

[tex]\bar f = -5[/tex]

C. [tex]a = -3[/tex], [tex]b = 1[/tex]

[tex]\bar f = \frac{11-19}{1-(-3)}[/tex]

[tex]\bar f = -2[/tex]

D. [tex]a = -1[/tex]. [tex]b = 2[/tex]

[tex]\bar f = \frac{14-11}{2-(-1)}[/tex]

[tex]\bar f = 1[/tex]

The option D represents an interval with a positive average rate of change.

Answer:

It would be D

Step-by-step explanation: