From a random sample of size 18, a researcher states that (11.1, 15.7) inches is a 90% confidence interval for mu, the mean length of bass caught in a small lake. A normal distribution was assumed. Using the 90% confidence interval obtain:

a. A point estimate of μ and its 90% margin of error.
b. A 95% confidence interval for μ.

Respuesta :

Complete Question

From a random sample of size 18, a researcher states that (11.1, 15.7) inches is a 90% confidence interval for mu, the mean length of bass caught in a small lake. A normal distribution was assumed. Using the 90% confidence interval obtain:

a. A point estimate of [tex]\mu[/tex] and its 90% margin of error.

b. A 95% confidence interval for [tex]\mu[/tex].

Answer:

a

[tex]\= x = 13.4[/tex]   .   [tex]E = 2.3[/tex]

b

[tex]10.7 <  \mu < 16.1  [/tex]

Step-by-step explanation:

From the question we are told that

  The sample size is  n = 18

  The 90% confidence interval is  (11.1, 15.7)

Generally the point estimate of  [tex]\mu[/tex] is mathematically  evaluated  as

       [tex]\= x = \frac{11.1 + 15.7 }{2}[/tex]

=>    [tex]\= x = 13.4[/tex]

Generally the margin of error is mathematically evaluated  as

     [tex]E = \frac{15.7 - 11.1}{2 }[/tex]

=> [tex]E = 2.3[/tex]

  From the question we are told the confidence level is  90% , hence the level of significance is    

      [tex]\alpha = (100 - 90 ) \%[/tex]

=>   [tex]\alpha = 0.10[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.645[/tex]

Generally the equation for the lower limit of the confidence interval is  

      [tex]\= x - Z_{\frac{\alpha }{2} } * \frac{s}{\sqrt{18} } = 11.1[/tex]

=> [tex]13.4 - 0.3877 s = 11.1[/tex]

=>  [tex]s = 5.932[/tex]

  From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E =  1.96 *  \frac{5.932}{\sqrt{18} }[/tex]

=>    [tex]E =  2.7 [/tex]      

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>    [tex]13.4  -  2.7  <  \mu < 13.4  +   2.7  [/tex]

=>    [tex]10.7 <  \mu < 16.1  [/tex]