Answer:
75 g
Explanation:
[tex]m_1[/tex] = Initial mass of water = 90 g
c = Specific heat of water
[tex]\Delta T_1[/tex] = Initial temperature difference = [tex](37.08-22.08)^{\circ}\text{C}[/tex]
[tex]m_1[/tex] = Mass of water to be added
[tex]\Delta T_2[/tex] = Final temperature difference = [tex](37.08-55.08)^{\circ}\text{C}[/tex]
Since, heat energy in the system is conserved we know
[tex]m_1c\Delta T_1+m_2c\Delta T_2=0\\\Rightarrow m_1c\Delta T_1=-m_2c\Delta T_2\\\Rightarrow m_2=-\dfrac{m_1\Delta T_1}{\Delta T_2}\\\Rightarrow m_2=-\dfrac{90(37.08-22.08)}{37.08-55.08}\\\Rightarrow m_2=75\ \text{g}[/tex]
The mass of water to be added to reach the desired temperature is 75 g.