You roll 4 fair, distinguishable, six-sided dice. What is the probability of rolling :______

a. 3 even and 1 odd numbers
b. 2 even and 2 odd numbers

Respuesta :

Answer:

a)0.25

b)0.375

Step-by-step explanation:

Possible outcomes when dice are rolled : 1 ,2 ,3,4,5 ,6

Even= 2,4,6  

Odd = 1 ,3 , 5

Probability of getting even =[tex]\frac{3}{6}=\frac{1}{2}[/tex]

Probability of getting odd = [tex]\frac{3}{6}=\frac{1}{2}[/tex]

4 dices are rolled together

a)P(3 even and 1 odd numbers)

P(3 even and 1 odd numbers)=[tex]^4C_3 (\frac{1}{2})^3 (\frac{1}{2})^1[/tex]

P(3 even and 1 odd numbers)=[tex]\frac{4!}{3!1!} (\frac{1}{2})^3 (\frac{1}{2})^1 =0.25[/tex]

b)P(2 even and 2 odd numbers)

P(2 even and 2 odd numbers)=[tex]^4C_2 (\frac{1}{2})^2 (\frac{1}{2})^2[/tex]

P(3 even and 1 odd numbers)=[tex]\frac{4!}{2!2!} (\frac{1}{2})^2 (\frac{1}{2})^2[/tex]=0.375