Respuesta :

Answer:

[tex] x = 18 [/tex]

[tex] y = 7.5 [/tex]

[tex] z = 7 [/tex]

Step-by-step explanation:

✍️[tex] (8x - 7) + (3x - 11) = 180 [/tex] (consecutive interior angles are supplementary)

Solve for x

[tex] 8x - 7 + 3x - 11 = 180 [/tex]

Add like terms

[tex] 11x - 18 = 180 [/tex]

Add 18 to both sides

[tex] 11x = 180 + 18 [/tex]

[tex] 11x = 198 [/tex]

Divide both sides by 11

✅[tex] x = 18 [/tex]

✍️[tex] (2y + 23) = (4y + 8) [/tex] (alternate interior angles are congruent)

Solve for y

[tex] 2y + 23 = 4y + 8 [/tex]

Collect like terms

[tex] 23 - 8 = 4y - 2y [/tex]

[tex] 15 = 2y [/tex]

Divide both sides by 2

✅y = 7.5

✍️[tex] (2y + 23) + (3z^2 - 5) = 180 [/tex] (linear pair angles)

Plug in the value of y

[tex] (2(7.5) + 23) + (3z^2 - 5) = 180 [/tex]

[tex] (15 + 23) + (3z^2 - 5) = 180 [/tex]

[tex] 38 + 3z^2 - 5 = 180 [/tex]

Add like terms

[tex] 3z^2 + 33 = 180 [/tex]

Subtract 33 from each side

[tex] 3z^2 = 180 - 33 [/tex]

[tex] 3z^2 = 147 [/tex]

Divide both sides by 3

[tex] z^2 = \frac{147}{3} [/tex]

[tex] z^2 = 49 [/tex]

Square both sides

[tex] \sqrt{z^2} = \sqrt{49} [/tex]

[tex] z = 7 [/tex]