Given:
10 workers produce 30 complex elements in 10 days.
To find:
The number of days, in which 5 workers produce 24 elements.
Solution:
According to the question, let as assume
[tex]n_1=10[/tex]
[tex]w_1=30[/tex]
[tex]d_1=10[/tex]
[tex]n_2=x[/tex]
[tex]w_2=24[/tex]
[tex]d_2=5[/tex]
where, n is number of workers, w is work done, and d is number of days.
We have, a formula,
[tex]\dfrac{n_1\times d_1}{w_1}=\dfrac{n_2\times d_2}{w_1}[/tex]
Substituting the values in the above formula, we get
[tex]\dfrac{10\times 10}{30}=\dfrac{x\times 5}{24}[/tex]
[tex]\dfrac{10}{3}=\dfrac{5x}{24}[/tex]
Isolate variable x.
[tex]\dfrac{10}{3}\times \dfrac{24}{5}=\dfrac{5x}{24}\times \dfrac{24}{5}[/tex]
[tex]\dfrac{240}{15}=x[/tex]
[tex]16=x[/tex]
Therefore, the required number of days is 16.