These two polygons are similar
y = [?]

Answer:
w = 9
x = 12
y = 5
z = 3
Step-by-step explanation:
The corresponding sides of similar polygons are proportional.
Therefore:
[tex] \frac{w}{3} = \frac{x}{4} = \frac{15}{y} = \frac{9}{z} = \frac{6}{2} [/tex]
Solve for each variable as follows:
✔️[tex] \frac{w}{3} = \frac{6}{2} [/tex]
Multiply both sides by 3
[tex] w = \frac{6}{2} \times 3 [/tex]
[tex] w = 3 \times 3 [/tex]
[tex] w = 9 [/tex]
✔️[tex] \frac{x}{4} = \frac{6}{2} [/tex]
Multiply both sides by 4
[tex] x = \frac{6}{2} \times 4 [/tex]
[tex] x = 3 \times 4 [/tex]
[tex] x = 12 [/tex]
✔️[tex] \frac{15}{y} = \frac{6}{2} [/tex]
Cross multiply
[tex] y \times 6 = 2 \times 15 [/tex]
[tex] 6y = 30 [/tex]
Divide both sides by 6
[tex] y = 5 [/tex]
✔️[tex] \frac{9}{z} = \frac{6}{2} [/tex]
Cross multiply
[tex] z \times 6 = 2 \times 9 [/tex]
[tex] 6z = 18 [/tex]
Divide both sides by 6
[tex] z = 3 [/tex]