Respuesta :

Answer:

Please check the explanation

Explanation:

The best two methods will be:

  • Factor by grouping
  • Factor out the GCF

Factor by grouping

Factor by grouping deals with establishing a smaller groups from each term.

[tex]18x^2=\:\left(2\cdot 3\cdot 3\cdot x^2\right)[/tex]

[tex]8\:=\:\:2\cdot 2\cdot 2[/tex]

Therefore, the expression becomes

[tex]18x^2=\:\left(2\cdot 3\cdot 3\cdot x^2\right)-\left(2\cdot \:2\cdot \:2\right)[/tex]

Now factor out the greatest common factor (GCF) which is 2

         [tex]=\:2\left(3\cdot \:\:3x^2-\left(2\right)\left(2\right)\right)[/tex]

           [tex]=2\left(9x^2-2\cdot \:2\right)[/tex]

            [tex]=2\left(9x^2-4\right)[/tex]

Factor out the GCF

Given the expression

[tex]18x^2-8\:\:\:[/tex]

factor out common term 2

[tex]=2\left(9x^2-4\right)[/tex]

[tex]=2\left(3x+2\right)\left(3x-2\right)[/tex]          ∵ [tex]Factors\:\:\left(9x^2-4\right)=\left(3x+2\right)\left(3x-2\right)[/tex]