What is the domain of the square root function graphed below?

Answer:
The domain of the graph must be [tex]x\ge \:-4[/tex].
Therefore,
[tex]x\ge \:-4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\ge \:-4\:\\ \:\mathrm{Interval\:Notation:}&\:[-4,\:\infty \:)\end{bmatrix}[/tex]
Hence, option a is true.
Step-by-step explanation:
From the graph, it is clear that the graph is heading towards positive infinity from x=-4.
The point x=-4 is included in the graph as the starting point of the graph i.e. x=4 is showing a closed circle on x=4, and heading towards positive infinity onward.
i.e. [-4, ∞)
Hence, the domain of the graph must be [tex]x\ge \:-4[/tex].
Therefore,
[tex]x\ge \:-4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\ge \:-4\:\\ \:\mathrm{Interval\:Notation:}&\:[-4,\:\infty \:)\end{bmatrix}[/tex]
Hence, option a is true.