Answer:
2.0 x [tex]10^{1}[/tex]
Step-by-step explanation:
1. length = 3.2 x [tex]10^{5}[/tex] m
width = 1.6 x [tex]10^{4}[/tex] m
Area of a rectangle = length x width
= (3.2 x [tex]10^{5}[/tex]) x (1.6 x [tex]10^{4}[/tex])
= 5.12 x [tex]10^{9}[/tex] [tex]m^{2}[/tex]
2. length = 1.28 x [tex]10^{7}[/tex] m
width = 8 x [tex]10^{3}[/tex] m
Area of a rectangle = length x width
= (1.28 x [tex]10^{7}[/tex]) x (8 x [tex]10^{3}[/tex])
= 1.024 x [tex]10^{11}[/tex] [tex]m^{2}[/tex]
[tex]\frac{Area of rectangle 2}{Area of rectangle 1}[/tex] = [tex]\frac{1.024*10^{11} }{5.12*10^{9} }[/tex]
= 20
= 2.0 x [tex]10^{1}[/tex]
Thus,
The area of rectangle 2 is 2.0 x [tex]10^{1}[/tex] times greater than the area of rectangle 1.