Respuesta :

Answer:

21π/2

Step-by-step explanation:

94.55π is the area of the required surface.

What is the exact area of a surface obtained by rotating the curve y=f(x), [tex]x_1\leq x\leq x_2[/tex] about the x-axis?

[tex]S=\int\limits^{x_1}_{x_2} {2\pi f(x)\sqrt{1+f'(x)^2} \, dx[/tex]

is the exact area of a surface obtained by rotating the curve y=f(x), [tex]x_1\leq x\leq x_2[/tex] about the x-axis

How to solve the problem?

Given,

[tex]x=\frac{1}{3}(y^2+2)^{\frac{3}{2}}[/tex]

[tex]\implies (3x)^\frac{2}{3}=y^2+2\\\implies y^2=(3x)^\frac{2}{3}-2[/tex]

[tex]\implies y=\sqrt{(3x)^\frac{2}{3}-2}[/tex]

Let

[tex]y=\sqrt{(3x)^\frac{2}{3}-2}=f(x)[/tex]

Now, the range of y is given 3≤y≤4

hence, the range of x is [tex](\frac{1}{3}(3^2+2)^{\frac{3}{2}}[/tex],[tex]\frac{1}{3}(4^2+2)^{\frac{3}{2}})[/tex]=(12.16,25.46).

So, [tex]S=\int\limits^{25.46}_{12.16} {2\pi f(x)\sqrt{1+f'(x)^2} dx\\\\=[\frac{\pi}{2}(3x)^{\frac{4}{3}}-\pi (3x)^{\frac{2}{3}}]^{25.46}_{12.16}\\=101.63\pi - 6.99 \pi \\= 94.55 \pi[/tex]

is the area of the required surface.

Hence, 94.55π is the area of the required surface.

Learn more about the area of surface- brainly.com/question/24126051

#SPJ2