The first three terms of the binomial expansion of (2 – ax)" are 64 – 16bx +100bx?.
Find the value of each of the integers n, a and b.

Ans: n=6, a=5, b=60

The first three terms of the binomial expansion of 2 ax are 64 16bx 100bxFind the value of each of the integers n a and bAns n6 a5 b60 class=

Respuesta :

Answer:

n = 6, a = 5, b = 60

Step-by-step explanation:

In a binomial function (a + b)ⁿ expression that represents the terms,

(a + b)ⁿ = [tex]\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k[/tex]

By this formula,

1st term = [tex]\binom{n}{0}a^{n-0}b^0[/tex] = aⁿ

2nd term = [tex]\binom{n}{1}a^{n-1}b^1[/tex] = [tex]n.a^{n-1}b^1[/tex]

3rd term = [tex]\binom{n}{2}a^{n-2}b^2[/tex] = [tex]\frac{n(n-1)}{2}.a^{n-2}.b^2[/tex]

For the binomial expansion initial 3 terms of (2 - ax)ⁿ = 64 - 16bx + 100bx²

Terms of (2 - ax)ⁿ = [tex]2^n+n(2)^{n-1}(-ax)+\frac{n(n-1)}{2}(2)^{n-2}(-ax)^2[/tex]

                             = [tex]2^n-n(2)^{n-1}(ax)+n(n-1)(2)^{n-3}(a^2x^2)[/tex]

Comparing the terms of both the expansions,

1st term

2ⁿ = 64

2ⁿ = 2⁶

n = 6

2d term

[tex]n(2)^{n-1}(ax)=16bx[/tex]

[tex]6(2)^{6-1}(a)=16b[/tex]

192a = 16b

b = 12a -----(1)

3rd term

[tex]n(n-1)2^{n-3}(a^2x^2)=100bx^2[/tex]

[tex]6(6-1)2^{(6-3)}(a^2)=100b[/tex]

[tex]30(2)^3(a^2)=100b[/tex]

240a² = 100b

b = 2.4a² -----(2)

From equation (1) and (2),

b = 12a = 2.4a²

a = [tex]\frac{12}{2.4}=5[/tex]

From equation (1)

b = 12a = 60

Therefore, n = 6, a = 5, b = 60