Respuesta :
Answer:
Factors of [tex]8q^6r^3 + 27s^6t^3[/tex] are [tex](2q^2r+3s^2t)(4q^4r2-12q^2rs^2t+9s^4t^2)[/tex]
a is [tex]2q^2r[/tex]
b is: [tex]3s^2t[/tex]
Step-by-step explanation:
We need to factor [tex]8q^6r^3 + 27s^6t^3[/tex]
[tex]8q^6r^3 + 27s^6t^3\\=(2q^2r)^3+(3s^2t)^3\\Applying \ formula: a^3 + b^3 = (a + b)(a^2 - ab + b^2)\\=(2q^2r+3s^2t)((2q^2r)^2-2(2q^2r)(3s^2t)+(3s^2t)^2)\\=(2q^2r+3s^2t)(4q^4r2-12q^2rs^2t+9s^4t^2)[/tex]
So, Factors of [tex]8q^6r^3 + 27s^6t^3[/tex] are [tex](2q^2r+3s^2t)(4q^4r2-12q^2rs^2t+9s^4t^2)[/tex]
What is a? a is [tex]2q^2r[/tex]
What is b? b is: [tex]3s^2t[/tex]
Answer:
The next answers for the page are 2, 3, 4, 9
Step-by-step explanation: