Respuesta :

Answer: ab =6

have:

[tex]\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=1\\\\=>\frac{b}{ab}+\frac{a}{ab}+\frac{1}{ab}=1\\\\<=>\frac{a+b+1}{ab}=1[/tex]

=> a + b + 1 = ab

⇔ a + b + 1 - ab = 0

⇔ b - 1 - a(b - 1) + 2 = 0

⇔ (b - 1)(1 - a) = -2

because a and b are postive integers => (b - 1) and (1 - a) also are integers

=> (b - 1) ∈ {-1; 1; 2; -2;}

(1 -a) ∈  {-1; 1; 2; -2;}

because (b -1).(1-a) = -2 => we have the table:

b - 1        -1             1              2             -2

1 - a         2            -2            -1              1

a              -1            3             2              0

b              0            2             3              -1

a.b            0           6             6               0

because a and b  are postive integers

=> (a;b) = (3;2) or (a;b) = (2;3)

=> ab = 6

Step-by-step explanation: