Answer:
S = [tex]\frac{19}{4}[/tex]
Step-by-step explanation:
Given
S = ut + [tex]\frac{1}{2}[/tex] at² ← substitute given values into expression
S = (10 × [tex]\frac{1}{2}[/tex] ) + ([tex]\frac{1}{2}[/tex] × - 2 × ([tex]\frac{1}{2}[/tex] )² )
= 5 + (- 1 × [tex]\frac{1}{4}[/tex] )
= 5 + (- [tex]\frac{1}{4}[/tex] )
= 5 - [tex]\frac{1}{4}[/tex]
= [tex]\frac{19}{4}[/tex]