Respuesta :
Answer:
The distance 'd' between T and S:
- [tex]d=10[/tex]
Step-by-step explanation:
As the point 'T' is located at (2, -4)
- So, the point 'T' has the coordinates (2, -4)
And the point 'S' is located at (2, 6)
- So, the point 'T' has the coordinates (2, 6)
The distance 'd' between T and S can be computed using the formula:
[tex]d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
[tex]=\sqrt{\left(2-2\right)^2+\left(6-\left(-4\right)\right)^2}[/tex]
[tex]=\sqrt{\left(2-2\right)^2+\left(6+4\right)^2}[/tex]
[tex]=\sqrt{0+10^2}[/tex]
[tex]=\sqrt{10^2}[/tex]
[tex]d=10[/tex]
Therefore, the distance 'd' between T and S:
- [tex]d=10[/tex]