Answer:
The radius of the circle is:
Step-by-step explanation:
Given the equation
[tex]\left(x\:+\:5\right)^2\:+\:\left(y\:-\:3\right)^2=\:42[/tex]
As we know that
[tex]\left(x\:-\:a\right)^2\:+\:\left(y\:-\:b\right)^2=\:r^2\:[/tex]
is the equation of the circle with a radius 'r', centered at (a, b)
[tex]\mathrm{Rewrite}\:\left(x+5\right)^2+\left(y-3\right)^2=4^2\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]
so, the circle properties are:
[tex]\left(x-\left(-5\right)\right)^2+\left(y-3\right)^2=4^2[/tex]
Therefore, the radius of the circle is:
[tex]r=4[/tex] units