Find the equation of the line that is perpendicular to the given line and passes through the given point.

y = −1/2x − 3; (14, 0)

The equation is y = ?

Respuesta :

Answer:

[tex]y=2x-28[/tex]

Step-by-step explanation:

Slope intercept form:

[tex]y=mx+b[/tex]

where:

  • m is the slope (change in the y values over the change in the x values)
  • b is the y-intercept (where x is 0)
  • x and y are corresponding coordinate points (x,y)

When two lines are perpendicular, their slopes will be opposite reciprocals.

examples:

[tex]\frac{1}{3}[/tex] → flip the fraction and change the sign → [tex]-3[/tex]

-5 or [tex]-\frac{5}{1}[/tex]→ flip the fraction and change the sign → [tex]\frac{1}{5}[/tex]

[tex]\frac{5}{7}[/tex] →flip the fraction and change the sign →[tex]-\frac{7}{5}[/tex]

So find the opposite reciprocal of the given slope:

[tex]y=(slope)x+(y-intercept)\\\\y=-\frac{1}{2} x-3\\\\slope=-\frac{1}{2}[/tex]

Flip the fraction and change the sign:

[tex]-\frac{1}{2}[/tex] → [tex]\frac{2}{1}[/tex] or [tex]2[/tex]

Now insert the new slope and the given points into point-slope form:

[tex]y-y_{1}=m(x-x_{1})\\\\(14_{x_{1}},0_{y_{1}})\\\\y-0=2(x-14)[/tex]

Solve the equation for y. Use the distributive property:

[tex]y-0=2(x)+2(-14)\\\\y-0=2x-28[/tex]

Simplify:

[tex]y=2x-28[/tex]

:Done