Respuesta :
Answer:
[tex]\frac{dr}{dt} = -1.325 \ cm/s[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
Calculus
Derivatives
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Taking Derivatives with respect to time
Step-by-step explanation:
Step 1: Define
Given:
[tex]V = \frac{4}{3} \pi r^3[/tex]
[tex]\frac{dV}{dt} = -116 \ cm^3/s[/tex]
[tex]V = 77 \ cm^3[/tex]
Step 2: Solve for r
- Substitute: [tex]77 = \frac{4}{3} \pi r^3[/tex]
- Isolate r term: [tex]\frac{77}{\frac{4}{3} \pi} = r^3[/tex]
- Isolate r: [tex]\sqrt[3]{\frac{77}{\frac{4}{3} \pi}} = r[/tex]
- Evaluate: [tex]2.63917 = r[/tex]
- Rewrite: [tex]r = 2.63917 \ cm[/tex]
Step 3: Differentiate
Differentiate the Volume Formula with respect to time t.
- Define: [tex]V = \frac{4}{3} \pi r^3[/tex]
- Differentiate [Basic Power Rule]: [tex]\frac{dV}{dt} = \frac{4}{3} \pi \cdot 3 \cdot r^{3-1} \cdot \frac{dr}{dt}[/tex]
- Simplify: [tex]\frac{dV}{dt} = 4 \pi r^2 \cdot \frac{dr}{dt}[/tex]
Step 4: Find radius rate
- Substitute in variables: [tex]-116 \ cm^3/sec = 4 \pi (2.63917 \ cm)^2 \cdot \frac{dr}{dt}[/tex]
- Isolate dr/dt rate: [tex]\frac{-116 \ cm^3/s}{4 \pi (2.63917 \ cm)^2} = \frac{dr}{dt}[/tex]
- Evaluate: [tex]-1.3253 \ cm/s = \frac{dr}{dt}[/tex]
- Rewrite: [tex]\frac{dr}{dt} = -1.3253 \ cm/s[/tex]
- Round: [tex]\frac{dr}{dt} = -1.325 \ cm/s[/tex]
Our radius is decreasing at a rate of -1.325 cm per second.