Respuesta :

Answer:

[tex]y = -7x + 22[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (4,-6)[/tex]

[tex](x_2,y_2) = (2,8)[/tex]

Required

Determine the line equation

This question will be answered using linear interpolation.

This is represented as thus:

[tex]\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Substitute values for x1,x2,y1 and y2

[tex]\frac{y - (-6)}{x - 4} = \frac{8 - (-6)}{2 - 4}[/tex]

[tex]\frac{y +6}{x - 4} = \frac{8 +6}{2 - 4}[/tex]

[tex]\frac{y +6}{x - 4} = \frac{14}{-2}[/tex]

[tex]\frac{y +6}{x - 4} =-7[/tex]

Cross Multiply

[tex]y + 6 = -7(x - 4)[/tex]

[tex]y + 6 = -7x + 28[/tex]

Make y the subject

[tex]y = -7x + 28-6[/tex]

[tex]y = -7x + 22[/tex]