Respuesta :

Answer:

[tex] m\angle 1= 120\degree \\

m\angle 2= 60\degree \\

m\angle 3 = 125\degree [/tex]

Step-by-step explanation:

[tex]4x \degree + (x + 30) \degree = 180 \degree \\ \\ (4x + x + 30) \degree = 180 \degree \\ \\ (5x + 30) \degree = 180 \degree \\ \\ 5x + 30 = 180 \\ \\5x = 180 - 30 \\ \\ 5x = 150 \\ \\ x = \frac{150}{5} \\ \\ x = 30 \\ \\ \\ m \angle 1 = 4x\degree = 4 \times 30\degree \\ \red{ \bold{m \angle 1= 120\degree }} \\ \\ m \angle 2 = (x + 30)\degree = (30 + 30) \degree \\ \purple{ \bold{m \angle 2= 60\degree }}\\ \\ m \angle 3= (5x - 25)\degree = (5 \times 30 - 25) \degree \\ = (150 - 25) \degree \\ \\ \orange{ \bold{m \angle 3= 125\degree }}[/tex]

Actually angles 1, 2 and 3 are not marked in the diagram, so their measurements could be different. I considered them as per my guess.