Respuesta :

Answer:

x = 2

Step-by-step explanation:

Exponential Equations

Solve:

[tex]5^{2x-1}+5^{x+1}=250[/tex]

Separate each exponential:

[tex]5^{2x}5^{-1}+5^{x}5^{1}=250[/tex]

Operating:

[tex]\displaystyle \frac{5^{2x}}{5}+5^{x}5=250[/tex]

Multiplying by 5:

[tex]5^{2x}+25\cdot5^x=1250[/tex]

Rearranging:

[tex]5^{2x}+25\cdot5^x-1250=0[/tex]

Recall that:

[tex]5^{2x}=(5^{x})^2[/tex]

[tex](5^{x})^2+25\cdot5^x-1250=0[/tex]

Calling

[tex]y=5^{x}:[/tex]

[tex]y^2+25y-1250=0[/tex]

Factoring:

[tex](y-25)(y+50)=0[/tex]

There are two possible solutions:

y=25

y=-50

Since

[tex]y=5^{x}[/tex]

y cannot be negative, thus:

[tex]5^{x}=25=5^2[/tex]

The solution is:

x = 2