Respuesta :

Answer:

[tex]\left|x-3\right|<5\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-2<x<8\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-2,\:8\right)\end{bmatrix}[/tex]

The graph is also attached.

Step-by-step explanation:

Given the expression

[tex]|x-3|\:<\:5[/tex]

Apply absolute rule:

[tex]\mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a[/tex]

so the expression becomes

[tex]-5<x-3<5[/tex]

[tex]x-3>-5\quad \mathrm{and}\quad \:x-3<5[/tex]

solving condition 1

x−3<5

Add 3 to both sides

x−3+3<5+3

x<8

solving condition 2

x−3>−5

Add 3 to both sides

x−3+3>−5+3

x>−2

combining the intervals

[tex]x>-2\quad \mathrm{and}\quad \:x<8[/tex]

Merging overlapping intervals

[tex]-2<x<8[/tex]

Therefore,

[tex]\left|x-3\right|<5\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-2<x<8\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-2,\:8\right)\end{bmatrix}[/tex]

The graph is also attached.

Ver imagen absor201