Respuesta :
Answer:
The coordinates of the centroid are:
[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]
The diagram is also attached below.
Step-by-step explanation:
Given the vertices
- P (-1, 7)
- Q (9, 5)
- R (4, 3)
We know that the intersection of medians brings the centroid of the triangle.
The centroid of a triangle is given by
[tex]O\:=\:\left(\frac{P_x+Q_x+R_x}{3},\:\frac{P_y+Q_y+R_y}{3}\:\right)[/tex]
In this example,
[tex]P_x=-1,\:P_y=7[/tex]
[tex]Qx=9,\:Q_y=5[/tex]
[tex]Rx=4,\:R_y=3[/tex]
substituting in the formula
[tex]O\:=\:\left(\frac{-1+9+4}{3},\:\frac{7+5+3}{3}\:\right)\:\:[/tex]
[tex]O\:=\:\left(\frac{12}{3},\:\frac{15}{3}\:\right)\:\:[/tex]
[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]
Therefore, the coordinates of the centroid are:
[tex]O\:=\:\left(4,\:5\right)\:\:[/tex]
The diagram is also attached below.

We've been given with the co-ordinates of vertices of the triangle and asked to calculate the co-ordinates of the centroid.
★ Centroid of a triangle :-
- [tex]\red{\boxed{ \sf{Centroid \: = \: \dfrac{x_1 \: + \: x_2 \: + \: x_3}{3} } \: , \: \dfrac{y_1 \: + \: y_2 \: + \: y_3}{3} }} \: \pink\bigstar [/tex]
We have :
- x₁ = -1
- x₂ = 9
- x3 = 4
- y₁ = 7
- y₂ = 5
- y3 = 3
Substituting the values :
★ For x co-ordinate:-
[tex]: \: \implies \: \sf{x\: = \: \dfrac{x_{1} \: + \: x_2 \: + \: x_3}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ - 1 \: + \: 9 \: + \: 4}{3}} \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ 8 \: + \: 4}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \dfrac{ 12}{3} } \\ \\ : \: \implies \: \sf{x\: = \: \cancel\dfrac{ 12}{3} } \\ \\ : \: \implies \: \sf{x\: = \: 4 }[/tex]
★ For y co-ordinate:-
[tex]: \: \implies \: \sf{y\: = \: \dfrac{y_{1} \: + \: y_2 \: + \: y_3}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 7 + 5 + 3}{3}} \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 10 \: + \: 5}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \dfrac{ 15}{3} } \\ \\ : \: \implies \: \sf{y\: = \: \cancel\dfrac{ 15}{3} } \\ \\ : \: \implies \: \sf{y\: = \: 5 }[/tex]
★ Henceforth,
- Co-ordinates are (4 , 5)
Additional Information :
★ Midpoint of two points:-
- [tex]\boxed{ \sf{M \: = \: \dfrac{x_1 \: + \: x_2 }{2} \: , \: \dfrac{y_1 \: + \: y_2 }{2}}} \: \pink\bigstar[/tex]
★ Distance Formula :-
- [tex]\huge \large \boxed{\sf{{d \: = \: \sqrt{(x _{2} - x _{1}) {}^{2} \: + \: (y _{2} - y _{1}) {}^{2} }}}} \: \red\bigstar[/tex]
★ Visit more :-
https://brainly.com/question/23658067
https://brainly.com/question/27354466
https://brainly.com/question/27354479
https://brainly.com/question/27354524
https://brainly.com/question/27354542