Respuesta :

Answer:

The surface area of the cuboid is 378 [tex]\frac{1}{4}[/tex] square inches.

Step-by-step explanation:

A cuboid is a shape which has six surfaces formed from a rectangle. The surface area of a cuboid is the sum of all its individual ares of each surface.

Given the following dimensions of the cuboid:

length = 10 3/4 in = [tex]\frac{43}{4}[/tex] in

width = 8 in

height = 5 1/2 in = [tex]\frac{11}{2}[/tex] in

Since the opposite surface of a cuboid are the same, then;

Area of the 1st surface = length x width

                                      = [tex]\frac{43}{4}[/tex] x 8

                                      = 86 square inches

Area of the 2nd surface = width x height

                                        = 8 x [tex]\frac{11}{2}[/tex]

                                        = 44 square inches

Area of the 3rd surface = length x height

                                       =  [tex]\frac{43}{4}[/tex] x [tex]\frac{11}{2}[/tex]

                                       = [tex]\frac{473}{8}[/tex]

                                       = 59 [tex]\frac{1}{8}[/tex] square inches

Surface area of the cuboid = 2 x 86 + 2 x 44 + 2 x [tex]\frac{473}{8}[/tex]

                                             = 172 + 88 + 118.25

                                             = 378.25

Surface area of the cuboid = 378 [tex]\frac{1}{4}[/tex] square inches