Answer:
0.0784
Step-by-step explanation:
From the information given:
The weight invested in stock A [tex]w_x = \dfrac{7 \times 70}{7 \times 70 + 4 \times 100 }[/tex]
[tex]w_x = \dfrac{490}{490+ 400 }[/tex]
[tex]w_x = \dfrac{490}{890 }[/tex]
[tex]w_x = 0.55056[/tex]
The weight invested in stock B [tex]w_y = \dfrac{4 \times 100}{7 * 70 + 4 \times 100}[/tex]
[tex]w_y = \dfrac{400}{890}[/tex]
[tex]w_y =0.44944[/tex]
Thus, expected rate of return
= [tex]w_x \times (E) (x) + w_y \times E(Y)[/tex]
= 0.55056(0.02) + 0.44944(0.15)
= 0.0110112 + 0.067416
= 0.0784272
[tex]\simeq[/tex] 0.0784