Determine the open t-intervals on which the curve is concave downward or concave upward. (Enter your answer using interval notation.) x = sin t, y = cos t, 0 < t < π

Respuesta :

Solution :

We have been given a parametric curve :

x = sin t , y = cos t , 0 < t < π

In order to determine concavity of the given parametric curve, we need to evaluate its second derivative first.

Therefore,

[tex]$\frac{dx}{dt} = \cos t, \ \frac{dy}{dt}= - \sin t$[/tex]

[tex]$\therefore \frac{dy}{dx}= \frac{- \sin t}{\cos t}$[/tex]

        [tex]$=- \tan t$[/tex]

Taking double derivatives of the above equation:

[tex]$\frac{d^2y}{dx^2}= - \frac{d}{dx}(\tan t) $[/tex]

      [tex]$= - \sec^2 t \frac{dt}{dx}$[/tex]

     [tex]$= - \sec^2 t \left(\frac{1}{\cos t}\right)$[/tex]

    [tex]$= - \sec^3 t$[/tex]

For the concave up, we have

[tex]$\frac{d^2y}{dx^2} > 0$[/tex]

[tex]$\Rightarrow - \sec^3 t > 0$[/tex]

∴ [tex]$t \ \epsilon \left( \frac{\pi }{2}, \pi \right)$[/tex]

For the concave down, we have

[tex]$\frac{d^2y}{dx^2} < 0$[/tex]

[tex]$\Rightarrow - \sec^3 t < 0$[/tex]

[tex]$t \ \epsilon \left( 0,\frac{\pi }{2} \right)$[/tex]