Answer:
A) 3 m
Explanation:
The major head loss is calculated by using the expression: [tex]f \dfrac{L}{D}( \dfrac {U^2}{2g})[/tex]
here:
U = Q/A
Using the continuity equation:
[tex]U = \dfrac{Q}{\dfrac{\pi}{4}D^2}[/tex]
[tex]U = \dfrac{5/60 \ m^3/s}{\dfrac{\pi}{4}(0.2)^2}[/tex]
U = 2.65 m/s
Reynolds no = [tex]\dfrac{\rho U D}{\mu}[/tex]
[tex]= \dfrac{998 \ kg/m^3 \times 2.65 \ m/s \times 0.2 m}{8.93 \times 10^{-4} \ Pa^-s}[/tex]
= 594,894
Thus, this implies that the flow is turbulent.
Using Moddy's diagram at 5.94 × 10⁻⁵ &;
the relative roughness of 0.01
f = 0.038
Thus, the major head loss = [tex]f \dfrac{L}{D}( \dfrac {U^2}{2g})[/tex]
[tex]=0.038 \times (\dfrac{45\ m }{0.2\ m } )\times \dfrac{(2.65 \ m/s) ^2}{2(9.81 \ m/s^2)}[/tex]
= 3.06 m
[tex]\simeq[/tex] 3 m