Answer:
(2,-17) should be the minimum.
Step-by-step explanation:
The minimum of a quadratic function occurs at [tex]x=-\frac{b}{2a}[/tex] . If a is positive, the minimum value of the function is [tex]f(-\frac{b}{2a})[/tex]
[tex]f_{min}x=ax^2+bx+c[/tex] occurs at [tex]x=-\frac{b}{2a}[/tex]
Find the value of [tex]x=-\frac{b}{2a}[/tex]
x = 2
evaluate f(2).
replace the variable x with 2 in the expression.
[tex]f(2)=5(2)^2-20(2)+3[/tex]
simplify the result.
[tex]f(2)=5(4)-20(2)+3[/tex]
[tex]f(2)=20-40+3[/tex]
[tex]f(2)=-17[/tex]
The final answer is -17
Use the x and y values to find where the minimum occurs.
HOPE THIS HELPS!