Respuesta :

Answer:

(2,-17) should be the minimum.

Step-by-step explanation:

The minimum of a quadratic function occurs at [tex]x=-\frac{b}{2a}[/tex] . If a is positive, the minimum value of the function is [tex]f(-\frac{b}{2a})[/tex]

[tex]f_{min}x=ax^2+bx+c[/tex] occurs at [tex]x=-\frac{b}{2a}[/tex]

Find the value of [tex]x=-\frac{b}{2a}[/tex]

x = 2

evaluate f(2).

replace the variable x with 2 in the expression.

[tex]f(2)=5(2)^2-20(2)+3[/tex]

simplify the result.

[tex]f(2)=5(4)-20(2)+3[/tex]

[tex]f(2)=20-40+3[/tex]

[tex]f(2)=-17[/tex]

The final answer is -17

Use the x and y values to find where the minimum occurs.

HOPE THIS HELPS!