A cylinder has a radius of 4 inches and a height of 3 inches a sphere has a radius of 4 inches what is the difference between the volumes to the nearest tenth of an inch of the cylinder and the sphere

Respuesta :

Answer:

The difference is 117.3 cubic inches.

Step-by-step explanation:

Radius of cylinder = 4 inches

Height of cylinder = 3 inches

Volume of a cylinder = [tex]\pi[/tex][tex]r^{2}[/tex]h

Where r is the radius and h the height.

Volume of the given cylinder = [tex]\frac{22}{7}[/tex] x [tex](4)^{2}[/tex] x 3

                                 = [tex]\frac{22}{7}[/tex] x 16 x 3

                                 = 150.857

Volume of the given cylinder = 150.86 cube inches

Radius of the sphere = 4 inches

Volume of sphere = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]

Volume of the given sphere =  [tex]\frac{4}{3}[/tex] x [tex]\frac{22}{7}[/tex] x [tex](4)^{3}[/tex]

                                           = [tex]\frac{88}{21}[/tex] x 64

                                           = 268.191

Volume of the sphere = 268.19 cube inches.

Difference between the volumes = 268.191 - 150.857

                                            = 117.333

The difference is 117.3 cubic inches.