Answer:
a) Upq*gradT(P) = -21,69 ⁰C/m
b) In direction of j ( or y )
c) gradT(P) = - 84 ⁰C/m is decreasing but has a maximum rate of increase in the direction of j (y)
Step-by-step explanation:
a) T (x,y,z) = 200*e∧-x²*i - 3*y²*j - 9*z²*k
We find a unit vector in the direction PQ
PQ = ( 5 , -4 , 6 ) - ( 4 , -1 , 5 )
PQ = ( 1 , -3 , 1 ) ||PQ|| = √ (1)² + (-3)² + (1)² ||PQ|| = √ 11
||PQ|| = 3,32
Unit vector in the direction of PQ is
Upq = ( 1/3,32 , -3/3,32 , 1/3,32 )
grad T = ( T´(x) + T´(y) + T´(z) )
T´(x) = -400*x*e∧-x²
T´(y) = -6*y
T´(z) = -18*z
The rate of change of temperature at the point P in the direction of PQ is:
Upq*gradT = ( 1/3,32 , -3/3,32 , 1/3,32 )* ( -400*x*e∧-x² , -6*y , - 18*z )
Upq*gradT = ( -400*x*e∧-x²/3,32 , - (18/3,32)*y - (18/3,32) * z )
At the point P ( 4 , - 1 , 5 )
Upq*gradT(P) = ( - 1600*e⁻16 /3,32 + 18*1/3,32 - 90/3,32 )
Upq*gradT(P) = ( - 0,00018 + 5,4216 - 27,11 )
Upq*gradT(P) = -21,69 ⁰C/m
b) In direction of j ( or y )
c) grad T = ( T´(x) + T´(y) + T´(z) )
grad T = ( -400*x*e∧-x² , -6*y , -18*z )
At P ( 4 , -1 , 5 )
gradT(P) = ( -400*4* e∧-4² + 6 - 90 )
gradT(P) = - 84 ⁰C/m
In the direction of y we find the maximum rate of increase at P